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An approximate analytical solution is obtained which predicts a microcapillary form during pulling which is 
close to that observed in experiments. 

Microcapillaries (hollow fibers) find wide application in opto- and radioelectronics, artificial kidney apparatuses, etc. 

In [1], an analytical theoretical model is proposed of pulling of glass microcapillaries from a tubular workpiece which is 
heated as it passes through a furnace. (Numerical solutions are also known of the problems on pulling of hollow fibers [2-4]; 
in the last work a dynamic problem is solved without consideration of heat transfer and viscosity variation with temperature.) 
In the present work the predictions made by the model [1] are compared with experimental data. As a result, it is possible to 
determine the configuration of a fiber narrowing zone in the pulling process and to evaluate its dimensions. 

First of all we briefly dwell on the pulling model and its theoretical description. Figure 1 shows how a glass tube (a 
workpiece) is brought into the furnace, heated (as a result, glass becomes soft and starts flowing), and is stretched, thus 
becoming thinner under the action of the force created by the receiving device. Upon leaving the furnace, the glass is cooled, 
gradually becoming a solid, and the process of fiber extension practically ceases. 

Assuming the workpiece and microcapillary walls to be sufficiently thin, we use quasi-two-dimensional (becoming 
quasi-one-dimensional in virtue of axial symmetry) equations of dynamics of thin films to describe a steady-state glass flow 
in the molded fiber (see [1, 5-7]). In the given case they are reduced to the form 

RhV = Q; (1) 

oQ dV d (Y,,~,~Rh)-- Y'ooh dR 
d~- dx ~ q- pghR; (2) 

pQV~& = 2z~Rh~,k - -  Zooh + 2a (RLk - -  1) - -  pgRh - -  
dR 

; (3) 
dx 

dT 
ocO d--S- - (q" + q*') zn ;  (5) 

' 2  dV V dR ) .  
2 ~  = 2ta . ~, dx + ~,R- d~- ' (6) 

1 dV _~ 2V dR ) 
Y'eo = 21~ X dx LR d~- ; (7) 
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The first equation in (1)-(9) is the continuity equation, the second and the third are the projections of the equation of 
momentum onto the tangent and normal to the generatrix (liquid glass - -  viscous Newtonian fluid), and the fourth is the heat 

transfer equation (heat transfer by conduction along a fiber is negligible)�9 As a rule, ch, 2 --- 0 may be taken. The pressure in 

the fiber cavity is assumed to be equal to the external pressure. 

In equations of motion (2) and (3), the terms of inertia forces, weight, and surface tension may be neglected. Besides, 

for thin, gradually becoming thinner fibers X = 1, kR *~ 1; as a result, the third equation gives ~00 = 0. With regard for 

this, an approximate analytical solution of the system (1)-(9) is constructed by the Laplace method, as it has been done earlier 

for solid fibers [8], on the assumption that the activation energy in the Arrhenius law for viscosity is high. In the initial fiber 

section, its radius, wall thickness, velocity, and temperature Ro, ho, Vo, To are prescribed, while in the terminal section (on 

the receiving device) a reception rate V~ is given. As a result, the following approximate analytical solution is obtained in the 

parametric form: 

tbr the heating zone (0 _< x _< l, T O _< T ~ Tp) 

R = / z  ~ 1 - -  (1 - -  m) exp[0 (T ~- 1)]; (10) 

X 
T vpcQ 

- -  { T - - T o  - -  0 -~ In [1 - - ( 1  - - m ) e x p  [ O f f - -  1)1]}; 
qlRo ( l l )  

ff~r the cooling zone (1 <_. x _< L, T o ~" T > TI) 

R = h = m ~ (E -~/~ - - m ) { e x p  I0 ('F - -  1 ) ] -  1}; 

x == l TvpCQqlRo ( - ~ 1 )  q~ ' - 1 E 1 / 2  • (12) 

• {T - -  1 - -  0-11n [m-~E-J /2  - -  ( rn- lE-1/2  - -  1) exp [0 (T - -  1)]]}. 
(13) 

In both regions 

~ = ~ - I / e ;  (14) 

m 

I - - E - I / "  ' q~ 

1 q2 
ql 

where R = R(x)/Ro; = h(x)/ho; V = V(x)/Vo; T = T(x)/Tp; To = To/Tp; Tl = T1/Tp; 0 = u/(GTp); E = V J V  o is the 

pulling ratio; ql = qpl < 0 (heating) at 0 -< x < l; q2 = q~l > 0 (cooling) at 1 < x <_ L. 
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Fig. 1. Schematic drawing of flow. 
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Fig. 2. Configuration of the pulling zone (curves, analytical solution; 
points, experiment): a) T O = 638 K, Tp = 1003 K, T 1 = 673 K, l = 0.16 
m; b) To = 673 K, Tp = 1103 K, T 1 = 870 K, l = 0.15 m. D, x, m. 
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Fig. 3. Transient zone length vs activation energy of viscous flow (a and b 
correspond to the conditions in Fig. 2; E = 478): 1) HI, 2) H2, 3) H = H 1 + H 2. 
HI, H2, H, m; U/G, deg. 

The temperatures at the end of the heating zone and on the receiving device to are related the given values as 

Tp= U [ U 2 U ( qd?o )]'/2; 
2Gin(m)" + 4G'In *(m) Gin(m) To--I �9 pcO 

l-- TppCQqxRo [1 TpT~ 0_~ln(m)] ; 

(16) 

(17) 
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TI= T p [ l _ O _ l l n ( m . l E _ l l 2 )  - (L=-l)qlRo q ~ l "  
TvpcQE 1/2 ql (18) 

A comparison of  (10)-(18) with the results of  numerical integration of  the system (1)-(8) made in [1] demonstrates a 

satisfactory accuracy of the approximate analytical solution. 

In some cases it is much easier in experiments to determine rip (with the heating zone length l and temperature T O 

being, naturally, known) as well as T1 (with the length L known) than heat fluxes ql and qz. In this case the following 

relations are obtained from (16)-( 18): 

TvpcO { 1 -  To 0_~ln(m)};  (19) 
ql -- IRo Tv 

q2 
ql 

TvpcQ ElI2 j T-__L_ 

qlRo(L-- l )  [ T v 
1 + 0 -1 In ( m - l E  - i /2)}, (20) 

which allow calculation of qi and q2 by an iteration process. Indeed, prescribing the initial approximation for o a /ql, we 

calculate m with the aid of  (15), then find ql and a new value of q2/ql from (19) and (20), and so on until the desired 

accuracy is achieved. 

The results obtained allow approximation of a transient zone in which a pulled workpiece undergoes major 

deformation. For this, we assume that at 0 _< x _< l - -  H 1 the glass tube represents a hollow cylinder with the external 

radius Ro + ho/2; at l - -  Hi -< x _< l it is a hollow truncated cone with base radii Ro + ho/2 and Rp + hpi2; at l _ x _< l 

+ H 2 - -  a hollow truncated cone with the base radii Ph, + hp/2 and R 1 + hJ2 ;  at 1 + H 2 <_ x _< L - -  a hollow cylinder 

with base radius R 1 + hJ2 .  Solving (10)-(15) in the same approximation, we calculate side surface areas of  a molded fiber 

corresponding to the heating and cooling zones 

)I { i 0 " 

= _ 2rt pcO_ (Ro j_ 1 ) (21) 
qlRo , - ~ -  ho (T v - T o ) ;  

d h ~) }2},/~ 
(22) 

On the other hand, each of the areas S 1 and S 2 must be approximately equal to the total lateral surface of the 

corresponding pair "cyl inder- t runcated cone," approximating a transient region of the fiber in the heating or cooling zone. 

From this condition, using (21) and (22), we determine the heights of  truncated cones: 

H 1 
4C ~ (1 § m) 1/4C 2 § (Ro § hot2) ~ (1 - -  m) 3 (3 -[- rn)  

( 1 - -  m) (3 -? m) 

(23) 

herein 

C , - -  pcQ T v ln(m); 
qlRo 0 

4D ~ El~ ~ 
I - l . = - -  ]- 

rn2E -k 2mE 112 _ 3 (24) 
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/ 4EDe,(ra*E + 2mE t/2 + 1) 
+ (m,E + 2mEt/2 _ _  3)2 

mE 1 / 2 -  1 
- -  (Ro + ho/2) ~ (m + E-I/z)2 mE1~ 2 + 3" 

where 

D , = - -  
0 qlRo l - - l \  ql / 

Physically, the dimensions II 1 and H 2 m e a n  that with an accuracy of 5-6% the pulled workpiece deformation begins 

to develop in the section x = l - -  H1 and ceases in the section x = l + H e. 

Knowing H~ and FIe, we may evaluate the deformation zone dimensions of a workpiece to be molded as well as an 
influence of U/G and Tp on these dimensions. 

Figure 2 represents a comparison of the above analytical solution of (10)-(15) and (19), (20) with experimental data 

obtained on a laboratory set-up designed for pulling of microcapillaries from glass tubes at the Institute of Mechanics and 

Biomechanics of the Bulgarian Academy of Sciences. Parameters had the following values: D O = 10.5 • 10 -3 m, h o = 10 -3 

m, V 0 = 2.5 • 10 -5 m/sec, L = 0.3 m, D 1 = 0.48 • 10 -3 m (at a given D l one may determine E and, respectively, V1), 

O = 3 • 103 kg/m 3, c = 103 J/(kg.deg); values of the remaining quantities are given in Fig. 2. We used U/G = 4.7 • 104 

deg (U = 93.4 kcal/mole; 0 = 46.86 for Fig. 2a and 0 = 42.61 for Fig. 2b). The activation energy of viscous flow U is 

consistent with the data reported in [9]. From Fig. 2 it is seen that at a reasonable value of U the neglect of inertia, 

gravitation, and surface forces on constructing the analytical solution (10)-(15) is quite justified. 

The proposed approximation of the transient zone allows evaluation of furnace dimensions. Approximate dimensions 

H i and H e depend on the assumed maximum heating temperature, kinematic process characteristics, physicochemical 
properties of the treated material, etc. 

Figure 3 gives the results of relations (23) and (24) used to calculate H1, H 2 and H = FI 1 + H e for the main 

parameters, described above and adopted in physical experiments. 

At high activation energies, HI(U/G ) and II2(U/G ) change more slightly. Since the glass stock viscosity essentially 

depends on the real chemical composition, the proposed approximation also allows evaluation of the variation of transient 

zone dimensions in dependence on the chemical composition of the glass stock. 

The results obtained may be used in designing axisymmetric furnaces with electrical resistance intended for pulling 

of microcapillaries and threads as well as for simulation of the existing technologies. 

NOTATION 

R, radius of the median surface of the fiber wall; h, thickness of the fiber wall; V, velocity of longitudinal motion 

(along the generatrix) of liquid glass in the fiber; Q, Volume flow rate divided by 27r; x, longitudinal coordinate along the 

axis of fiber symmetry; Er~. and I~oo, longitudinal (along the generatrix) and azimuthal internal stresses in fiber; p, glass 

density; g, gravitational acceleration along axis 0x; X, elongation of an infinitesimal element of the generatrix as compared to 

an element of the axis 0x corresponding to it; k, curvature of the generatrix; a, surface tension coefficient; T, temperature; 

c, heat capacity of glass; q.l and qu2' heat fluxes in the direction of external normals to outer and inner sides of the fiber 

wall; /z, viscosity; U, activation energy of viscous flow; P-0, preexponential in the Arrhenius law for viscosity; G, gas 

constant; Ro, ho, V0, and To, initial radius of the median surface, wall thickness, velocity, and temperature; V1, fiber 

reception rate; 1, length of the heating zone; Tp, glass temperature at the end of the heating zone (at x = /); L, distance 

between the section, where heating is started, and the receiving device (fiber length); E, pulling ratio; D O and D1, outer 

diameters of a workpiece at the furnace inlet and outlet; D(x), outer diameter of the stretched tube; H1 and He, heights of 

truncated cones; S~ and $2, areas of lateral surfaces of a shaped microcapillary in the heating and cooling zones; H, length of 

the transient zone of the fiber. Indices 0, p, and 1 denote R, h, and T referring to the initial section (x = 0), heating zone 
boundary (x = /), and fiber section on the receiving device (x = L). 
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